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1. Introduction

Generic representations occupy a specially important part of non-unitary duals
of both classical and metaplectic groups. This class of representations appears
in numerous problems in representation theory and has important global appli-
cations as well as applications in the theory of L-functions and L-packets.

Certain basic facts about the generic representations have been discussed
in both classical and metaplectic case. For instance, heredity of Whittaker
models, proved for classical groups by Rodier ([25]), has been extended to the
metaplectic case in [2] and [28].

However, there are still many known properties of generic representations
of classical groups that are not verified in the metaplectic case and it is of
particular interest to obtain the knowledge how the theta correspondence treats
this class of representations.

Theta lifts of generic discrete series for the symplectic-orthogonal dual pair
over a non-archimedean local field of characteristic zero have been described
by Muić and Savin in [23]. Among other results, it has been proved that
every generic discrete series of symplectic group has a generic theta lift and
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that the first occurrence index of such representation of rank n symplectic
group equals either n or n − 1. These results have been obtained using essen-
tially analytical technics, based on the theory of L-functions developed by
Shahidi ([26]) and the description of generic square-integrable representations
obtained in [19] and [20].

In this paper we study discrete series representations of metaplectic group
over a non-archimedean local field of characteristic zero with odd residual
characteristic which have a generic theta lift on the split odd orthogonal tower.
It is almost a trivial fact that the generic representation of the metaplectic
group has a generic theta lift in the equal rank case. However, it remains to
determine discrete series of metaplectic groups which have generic theta lifts
on not necessarily equal level of the split odd orthogonal tower. To determine
such representations, we use mostly algebraic methods, based on the classifi-
cation of discrete series of classical groups from [16] and [17], together
with the classification of strongly positive representations of metaplectic
groups from [12]. We note that the classification of discrete series of classical
groups was already complete without any assumptions in the case of generic
representations.

The crucial facts for our investigation are contained in the correspondence
between irreducible genuine representations of rank n metaplectic group and
irreducible representations of odd orthogonal groups of quadratic spaces of
discriminant 1 and dimension 2n + 1, proved by Gan and Savin in [4]. Firstly,
this correspondence allows us to transfer certain analytic aspects of the
Mœglin – Tadić classification of discrete series from the classical case to the
metaplectic one. Thus, we start from genuine discrete series representation
of the metaplectic group, study its lifts in the odd orthogonal towers and
then transfer the obtained information back to the metaplectic one. Similar
double pass approach has already been used in [14] to obtain the explicit
first occurrence indices of genuine discrete series of metaplectic groups
and in [6] to prove irreducibility of unitary principal series of metaplectic
groups.

Secondly, the special aspects of mentioned correspondence related to the
subset of generic representations (Section 9 in [4]) present a starting point
of our study. As a rather direct consequence of mentioned results we obtain
some necessary conditions which discrete series representation of metaplectic
group that has a generic theta lift on the split odd orthogonal tower has to
satisfy. Further results are deduced from the precise investigation of lifts of
particulary interesting discrete series (that is, in the case of generic reducibi-
lities), combined with certain important properties of generic discrete series
of classical groups (which have been derived in [5]). This also allows us to
obtain deeper knowledge about the structure of theta lifts of generic discrete
series.
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Now we describe the contents of the paper in more detail. In the following
section we review some of the standard facts on the representation theory of
the considered groups, while in the third section we summarize without proofs
the relevant material on the theta correspondence and generic representations.
Section 4 and 5 present a technical heart of the paper. Section 4 is devoted
to the study of theta lifts of discrete series, while in the Section 5 we obtain
precise results on the generic theta lifts of discrete series in the case of so-
called generic reducibilities. In the same section our main results are stated
and proved.

We would like to thank Goran Muić for his active interest in the publication
of this paper.

2. Notations and preliminaries

Let F be a non-archimedean local field of characteristic zero with odd residual
characteristic. In the sequel, we fix a non-trivial additive character ψ of F .

First we discuss the groups that we consider.
Let V0 denote an anisotropic quadratic space over F of odd dimension.

Then dim V0 ∈ {1, 3}. More details about the invariants of this space can
be found in [9] and [11]. In each step we add a hyperbolic plane and obtain
an enlarged quadratic space, a tower of quadratic spaces and a tower of
corresponding orthogonal groups. In the case when r hyperbolic planes are
added to the anisotropic space, enlarged quadratic space will be denoted by
Vr , while a corresponding orthogonal group will be denoted by O(Vr ). Set
mr = 1

2 dim Vr .
To a fixed quadratic character χV0 one can attach two odd orthogonal

towers, one with dim V0 = 1 (+-orthogonal tower or split orthogonal tower)
and the other with dim V0 = 3 (−-orthogonal tower), as explained in detail
in Chapter V of [10]. We denote by O(V +

r ) and O(V −
r ) corresponding

orthogonal groups of the spaces obtained by adding r hyperbolic planes.
We denote by I rr(O(Vr )) the set of isomorphism classes of irreducible

admissible representations of the orthogonal group O(Vr ).

Let ˜Sp(n) be the metaplectic group of rank n over F , the unique non-trivial
two-fold central extension of symplectic group Sp(n, F). In other words, we
have the following:

1 → μ2 → ˜Sp(n) → Sp(n, F) → 1,

where μ2 = {1,−1}. The multiplication in ˜Sp(n) (which is as a set given
by Sp(n, F) × μ2) is given by the Rao’s cocycle ([24]). For more detailed
description of the structural theory of metaplectic groups we refer the reader
to [7], [10] and [24].
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We will study only genuine representations of ˜Sp(n) (that is, those which

do not factor through μ2), so let I rr(˜Sp(n)) stand for the set of isomorphism

classes of irreducible admissible genuine representations of the group ˜Sp(n).

Further, let S(˜Sp(n)) denote the Grothendieck group of the category of all

admissible genuine representations of finite length of ˜Sp(n) (that is, a free

abelian group over the set of all irreducible genuine representations of ˜Sp(n))

and set S = ⊕n≥0S(˜Sp(n)).

Let us denote by ˜GL(n, F) a double cover of GL(n, F), where the multi-
plication is given by (g1, ε1)(g2, ε2) = (g1g2, ε1ε2(detg1, detg2)F). Here
εi ∈ μ2 for i = 1, 2 and (·, ·)F denotes the Hilbert symbol of the field F .

In the sequel we will fix a character χV,ψ of ˜GL(n, F) given by

χV,ψ (g, ε) = χV (detg)εγ
(
detg, 1

2ψ
)−1, where γ denotes the Weil index

([10]) and χV is a character related to the orthogonal tower. Set α = χ2
V,ψ

and note that α is a quadratic character on GL(n, F). Also, we remark that

every irreducible genuine representation ρ of ˜GL(n, F) is of the form χV,ψρ
′

for some irreducible representation ρ′ of GL(n, F).

Write Rgen = ⊕n≥0R( ˜GL(n, F))gen, where R( ˜GL(n, F))gen denotes the
Grothendieck group of the category of all admissible genuine representations

of finite length of ˜GL(n, F).
We denote by ν the character of GL(n, F) defined by |det|F .

If ρ is an irreducible cuspidal representation of GL(nρ, F) (this

defines nρ), or such genuine representation of ˜GL(nρ, F), we say that
	 = {νaρ, νa+1ρ, . . . , νa+kρ} is a segment, where a ∈ R and k ∈ Z≥0.
From now on, we denote the segment {νaρ, νa+1ρ, . . . , νa+kρ} briefly by
[νaρ, νa+kρ]. The unique irreducible subrepresentation of the induced repre-
sentation νa+kρ × νa+k−1ρ × · · · × νaρ will be denoted by δ(	). We note
that δ(	) is an essentially square-integrable representation attached to the
segment 	, and if ρ is a genuine representation then δ(	) is also genuine.

The trivial representation of group F× will be denoted by 1F× .
For an ordered partition s = (n1, n2, . . . , ni) of some m ≤ n, we denote

by Ps a standard parabolic subgroup of Sp(n, F) (consisting of block upper-
triangular matrices), whose Levi factor equals GL(n1, F)×GL(n2, F)×· · ·×
GL(ni , F)×Sp(n−m, F). Then the standard parabolic subgroup P̃s of ˜Sp(n)

is the preimage of Ps in ˜Sp(n). There is an analogous notation for the Levi
factors of the metaplectic groups (described in more detail in [7], Section 2.2)
and for the standard parabolic subgroups of O(Vr ) (that is, those containing
the upper triangular Borel subgroup). We will denote by ρ1 × ρ2 × · · · ×
ρi �σ the representation that is parabolically induced from the representation
ρ1⊗ρ2 ⊗· · ·⊗ρi ⊗σ of the Levi factor of P̃s . The normalized Jacquet module



Discrete series of metaplectic groups having generic theta lifts 205

of a smooth representation σ of ˜Sp(n) with respect to standard parabolic
subgroup P̃s will be denoted by RP̃s

(σ ). Similarly, RPs (τ ) will stand for
the normalized Jacquet module of a smooth representation τ of O(Vr ) with
respect to standard parabolic subgroup Ps . By abuse of notation, we write
RP̃l
(σ ) (resp. RPl (τ )) instead of RP̃(l)

(σ ) (resp. RP(l) (τ )), for l ∈ N.

For an irreducible cuspidal representation ρ of ˜GL(n, F) (resp., GL(n, F)),
we denote by RP̃n

(σ )(ρ) (resp., RPn (σ )(ρ)) the maximal ρ-isotypic quotient
of RP̃n

(σ ) (resp., of RPn (σ )). It is a maximal direct summand of RP̃n
(σ )

(resp., RPn (σ )) on which ˜GL(n, F) (resp., GL(n, F)) acts by ρ.
Now we recall some results related to calculations with Jacquet modules,

which will be used in the paper. Let σ denote an irreducible genuine represen-

tation of ˜Sp(n). Then RP̃k
(σ ), for 0 ≤ k ≤ n, can be interpreted as a genuine

representation of ˜GL(k, F)× ˜Sp(n − k), i.e., is an element of Rgen ⊗ S . For
such σ we can introduce μ∗(σ ) ∈ Rgen ⊗ S by

μ∗(σ ) =
n∑

k=0

s.s.(RP̃k
(σ ))

(s.s. denotes the semisimplification) and extend μ∗ linearly to the whole of S .
In the same way μ∗ can be defined for irreducible representations of classical
groups.

The following metaplectic version of Tadić’s structure formula ([29]) has
been proved in [7].

Lemma 2.1. Let ρ ∈ Rgen be an irreducible cuspidal representation and
a, b ∈ R such that a+b ∈ Z≥0. Let σ be an admissible genuine representation

of finite length of ˜Sp(n). Write μ∗(σ ) = ∑
π,σ ′ π ⊗ σ ′. Then the following

holds:

μ∗(δ([ν−aρ, νbρ])� σ) =
b∑

i=−a−1

b∑

j=i

∑

π,σ ′
δ([ν−iαρ̃, νaαρ̃])

× δ([ν j+1ρ, νbρ])× π ⊗ δ([νi+1ρ, ν jρ])� σ ′.

We omit δ([νxρ, ν yρ]) if x > y.

3. Preliminary results on theta correspondence and generic
representations

In this section we review some results about theta correspondence which will
be used afterwards in the paper.
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The pair (Sp(n), O(Vr)) is a reductive dual pair in Sp(n · dim Vr ). The

group Sp(n) does not split in ˜Sp(n · dim Vr ), since the space Vr has the
odd dimension. Thus, the theta correspondence relates the representations of

the metaplectic group ˜Sp(n) and those of the orthogonal group O(Vr ). Set
n1 = n · dim Vr . Let ωn,r denote the pull-back of the Weil representation

ωn1,ψ of the group ˜Sp(n1), restricted to the dual pair ˜Sp(n) × O(Vr ) (as in
Chapter II of [10]).

For σ ∈ I rr(˜Sp(n)), we let �(σ, r) denote a smooth representation
of O(Vr ) given as the full lift of σ to the r-th level of the orthogonal

tower. �(σ, r) is the biggest quotient of ωn,r on which ˜Sp(n) acts as a
multiple of σ . Specially, we write �+(σ, r) (resp., �−(σ, r)) for the full
lift of σ to the r-th level of the +-orthogonal tower (resp., −-orthogonal
tower).

Likewise, for τ ∈ I rr(O(Vr )) we denote by �(τ, n) the full lift of repre-

sentation τ , which is a smooth genuine representation of ˜Sp(n).
The following theorem summarizes basic facts about the theta corres-

pondence, proved in [10] and [18]. We emphasize the assumption that the
residual characteristic of the field F is different than 2.

Theorem 3.1. For σ ∈ I rr(˜Sp(n)) exists a non-negative integer r such that
�(σ, r) 
= 0. The smallest such r is called the first occurrence index of σ
in the orthogonal tower and will be denoted by r(σ ). Also, �(σ, r ′) 
= 0 for
r ′ ≥ r . We will write r+(σ ) (resp., r−(σ )) for the first occurrence index of σ
in the +-orthogonal tower (resp., −-orthogonal tower).

The representation �(σ, r) is either zero or it has a unique irreducible
quotient. We denote this unique irreducible quotient by σ(r). Also, we write
σ+(r) (resp., σ−(r)) for this irreducible quotient in the +-orthogonal tower
(resp., −-orthogonal tower).

The analogous statements hold for �(τ, n) if τ is an irreducible smooth
representation of O(Vr ).

If σ is an irreducible cuspidal representation of ˜Sp(n) then σ(r(σ )) is an
irreducible cuspidal representation of O(Vr(σ )).

We take a moment to recall the basic results on the rank-one reducibilities
which are of particular importance in the case of generic representations.

Let ρ denote an irreducible self-contragredient cuspidal representation of
the group GL(m, F) and let σ denote an irreducible cuspidal representation

of ˜Sp(n). It is proved in [27] that there exists a unique non-negative real
number s1 such that νs1ρ � σ(r(σ )) reduces. Furthermore, it is a result of
Shahidi ([26]) that if σ(r(σ )) is a generic representation of O(V +

r(σ )), then

s1 ∈ {
0, 1

2 , 1
}
.
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Using the methods of theta correspondence, Hanzer and Muić have
proved in [8] that there is a unique non-negative real number s2 such that
νs2χV,ψρ � σ reduces (this has also been proved independently in [4]). If ρ
is not a trivial representation of F×, then s1 = s2. Otherwise, s1 = |n−mr(σ )|
and s2 = |mr(σ ) − n − 1|.

Let us now recall the definition of generic representations.
Let Ur stand for the unipotent radical of a Borel subgroup Br = Tr · Ur

of O(V +
r ) and let λ denote some generic character of Ur . Choice of λ is not

important, since any two generic characters of Ur are in the same orbit under
the adjoint action of the maximal torus Tr . Representation τ ∈ I rr(O(V +

r ))

is said to be generic if HomUr (τ, λ) 
= 0.
In the following lemma we summarize some important properties of

generic representations of split odd orthogonal groups, which can be proved
in the same way as in [5], Section 6.

Lemma 3.2.

(i) Suppose that the standard generic representation τ of O(V +
r ) contains

some square integrable subquotient. Then every irreducible generic sub-
quotient of τ is square integrable.

(ii) The Whittaker model is hereditary, that is, if ρ1, ρ2, . . . , ρk are irre-
ducible generic representation of GL(m1, F), GL(m2, F), . . . ,
GL(mk, F), respectively, and τ an irreducible representation of O(V +

r ),
then the induced representation ρ1 × ρ2 × · · · × ρk � τ is generic if and
only if τ is generic.

Similarly as in the orthogonal case, let U ′
n denote the unipotent radical

of a Borel subgroup B̃n
′ = T̃n

′ · U ′
n of ˜Sp(n). Observe that ˜Sp(n) splits

over U ′
n , and T̃n

′
denotes the preimage of maximal diagonal torus in Sp(n).

By results of Gan, Gross and Prasad ([3]), the T̃n
′
-orbits of generic characters

of U ′
n are indexed by non-trivial characters of F modulo the action of (F×)2.

So, the additive character ψ of F yields a T̃n
′
-orbit of generic characters λ′

ψ

of U ′
n, which is picked up by the Weil representation. More explicitly, the

λ-twisted Jacquet Un-module of ωψ equals c − ind
˜Sp(n)
U ′

n
(λ′
ψ), where c − ind

denotes the compact induction. We call a representation σ ∈ I rr(˜Sp(n)) ψ-
generic if HomU ′

n
(σ, λ′

ψ) 
= 0. This immediately shows that any ψ-generic

representation of ˜Sp(n) lifts to the split odd orthogonal tower.
The following results of Gan and Savin (Theorems 1.3 and 8.1 of [4]) are

crucial for our investigation.

Theorem 3.3. Let F be a non-archimedean local field of characteristic 0
with odd residual characteristic. For each non-trivial additive character ψ of
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F, there is an injection

�ψ : I rr(˜Sp(n)) → I rr(O(V +
n )) � I rr(O(V −

n−1))

given by the theta correspondence (with respect to ψ). Suppose that represen-

tations σ ∈ I rr(˜Sp(n)) and τ ∈ I rr(O(V )) correspond under �ψ . Then σ
is a discrete series representation if and only if τ is a discrete series represen-
tation. Further, if τ is a generic representation of O(V +

n ), then σ isψ-generic.
Finally, if σ is a ψ-generic tempered representation, then τ is generic.

Now we prove a corollary which significantly reduces the procedure of
finding the generic theta lifts.

Corollary 3.4. Let σ ∈ I rr(˜Sp(n)) such that r+(σ ) ≥ n + 1. Then there is
no generic theta lift of σ in the +-orthogonal tower.

Proof. Suppose that τ = σ+(k) is generic for some k ≥ r+(σ ). Then
Theorem 3.1 implies that τ (m) is non-zero for some m < k, contradicting
Corollary 9.5 of [4]. �

An important consequence of this corollary is that if σ ∈ I rr(˜Sp(n)) has
a generic theta lift in the +-orthogonal tower, then σ+(k) is generic for some
k ≤ n.

The following two lemmas are proved in Section 5 of [13] and they present
an elementary but useful criterion for pushing down the lifts of irreducible
representations.

Lemma 3.5. Suppose that σ is an irreducible genuine representation of
˜Sp(n). Then �(σ, r) 
= 0 implies RP1(�(σ, r + 1))(ν−(mr+1−n−1)1F×) 
= 0.

Further, if RP̃1
(σ )(ν−(mr+1−n−1)χV,ψ1F×) = 0, then �(σ, r) 
= 0 if and

only if RP1(�(σ, r + 1))(ν−(mr+1−n−1)1F×) 
= 0. In that case,

σ(r + 1) ↪→ ν−(mr+1−n−1)1F× � σ(r).

Lemma 3.6. Let τ denote an irreducible representation of O(Vr ).
If �(τ, n) 
= 0, then RP̃1

(�(τ, n + 1))(νmr−(n+1)χV,ψ1F×) 
= 0.

Suppose that RP1(τ )(ν
mr−(n+1)1F×) = 0. Then �(τ, n) 
= 0 if and only

if RP̃1
(�(τ, n + 1))(νmr −(n+1)χV,ψ1F×) 
= 0. In that case, τ (n + 1) is a

subrepresentation of νmr −(n+1)χV,ψ1F× � τ (n).

Results obtained in the paper [14], using Lemma 3.5 and the classifi-
cation of discrete series representations given in [17], provide useful embed-
dings of the non-zero lifts of discrete series representations of metaplectic
groups which we recall in the following lemma. Special case of these results
is contained in Corollary 6.4 of [14].
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Lemma 3.7. Let σ denote a discrete series representation of the metaplectic

group ˜Sp(n). If �(σ, r) 
= 0, then σ(r + 1) ↪→ ν−(mr+1−n−1)1F× � σ(r).

At the end of this section we state two propositions, analogous to
Remark 5.2 of [22], which enable the use of an inductive procedure for
determining the theta lifts of discrete series representations.

Proposition 3.8. Suppose that an irreducible representation σ ∈ I rr(˜Sp(n))
may be written as an irreducible subrepresentation of the induced represen-
tation of the form δ([νaχV,ψρ, ν

bχV,ψρ]) � σ ′, where ρ is an irreducible

cuspidal representation of GL(nρ, F), σ ′ ∈ I rr(˜Sp(n′)) and b − a ≥ 0.
Let �(σ, r) 
= 0 and suppose that (a, ρ) 
= (mr − n, 1F×). Then there is
an irreducible representation τ of some O(Vr ′) such that σ(r) is a subrepre-
sentation of δ([νaρ, νbρ]) � τ . Further, suppose that if μ∗(σ ) contains the
representation δ([νaχV,ψρ, ν

bχV,ψρ]) ⊗ σ ′′ for some irreducible genuine

representation σ ′′ of ˜Sp(n′), then σ ′′ ∼= σ ′. Then σ(r) is a subrepresentation
of

δ([νaρ, νbρ])� σ ′(r − n + n′).

Proposition 3.9. Suppose that an irreducible representation τ ∈ I rr(O(Vr ))

may be written as an irreducible subrepresentation of the induced represen-
tation of the form δ([νaρ, νbρ]) � τ ′, where ρ is an irreducible cuspidal
representation of GL(nρ, F), τ ′ ∈ I rr(O(Vr ′)) and b − a ≥ 0. Let
�(τ, n) 
= 0 and suppose that (a, ρ) 
= (n − mr + 1, 1F×). Then there

is an irreducible representation σ of some ˜Sp(n′) such that τ (n) is a sub-
representation of δ([νaχV,ψρ, ν

bχV,ψρ]) � σ . Further, suppose that if
μ∗(τ ) ≥ δ([νaρ, νbρ])⊗ τ ′′, for some irreducible genuine representation τ ′′
of O(Vr ′), then τ ′′ ∼= τ ′. Then τ (n) is a subrepresentation of

δ([νaχV,ψρ, ν
bχV,ψρ])� τ ′(n − r + r ′).

4. Theta lifts of discrete series

This section is devoted to the proof of some general results on the theta
lifts of genuine discrete series of metaplectic groups. Also, we introduce
some notation and recall the results which will be used afterwards in the
paper.

Our description of the theta lifts of discrete series relies on the basic
assumption, which now follows from [1]. This assumption is explained
in detail in [17], while its metaplectic version has been discussed in the
beginning of the sixth section of [14]. We note that the basic assumption for
generic representations of classical groups follows already from [26].
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An irreducible representation σ ∈ S is called strongly positive if for every
embedding

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk � σcusp,

where ρi ∈ Rgen, i = 1, 2, . . . , k, are irreducible cuspidal unitary representa-
tions and σcusp ∈ S is an irreducible cuspidal representation, we have si > 0
for each i .

Obviously, every strongly positive representation is square-integrable. Irre-
ducible strongly positive representations are called strongly positive discrete
series. Strongly positive discrete series of classical groups are defined in a
completely analogous way.

We take a moment to briefly recall an inductive description of non-
supercuspidal strongly positive discrete series, which has been obtained
in [12].

Proposition 4.1. Suppose that σ ∈ S(˜Sp(n)) is an irreducible strongly

positive representation and let ρ ∈ R( ˜GL(m, F))gen denote an irreducible
cuspidal representation such that some twist of ρ appears in the cuspidal
support of σ . We denote by σcusp the partial cuspidal support of σ . Then there
exist unique a, b ∈ R such that a > 0, b > 0, b −a ∈ Z≥0, and a unique irre-
ducible strongly positive representation σ ′ with the property that σ is a unique
irreducible subrepresentation of δ([νaρ, νbρ])� σ ′. Furthermore, there is a
non-negative integer l such that a+l = s, where s > 0 is such that νsρ�σcusp

reduces (note that the basic assumption implies 2s ∈ Z). If l = 0 there are
no twists of ρ appearing in the cuspidal support of σ ′ and if l > 0 there
exist a unique b′ > b and a unique strongly positive discrete series σ ′′, which
contains neither νaρ nor νa+1ρ in its cuspidal support, such that σ ′ can be
written as a unique irreducible subrepresentation of δ([νa+1ρ, νb′

ρ])� σ ′′.

Obviously, if νxρ appears in the cuspidal support of σ then we have
2x ∈ Z.

In the rest of this section σ denotes an arbitrary but fixed discrete series

representation of ˜Sp(n) (that is, an irreducible square-integrable representa-

tion of ˜Sp(n)).
The following result has been proved in [14], using Mœglin-Tadić classifi-

cation of discrete series.

Theorem 4.2. There exists an ordered pair (k, Sk), consisting of an integer
k > 0 and an ordered k-tuple Sk = (σ1, σ2, . . . , σk) of discrete series
representations with the following properties:

(i) σi ∈ I rr(˜Sp(ni)), ni < n j for i < j ;
(ii) σ1 is a strongly positive discrete series and σ ∼= σk;
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(iii) For every i ∈ {2, 3, . . . , k} there is a self-contragredient cuspidal repre-
sentation ρi ∈ I rr(GL(mi , F)) (this defines mi ) and non-negative real
numbers ai , bi such that bi − ai is a positive integer, satisfying

σi ↪→ δ([ν−aiχV,ψρi , ν
biχV,ψρi ])� σi−1

and RP̃mi
(σi−1)(ν

xχV,ψρi ) = 0 for ai ≤ x ≤ bi ;

(iv) If ρi
∼= ρ j for i < j , then ρi

∼= ρl for l ∈ {i + 1, i + 2, . . . , j};
(v) If ρi

∼= ρi+1 then ai < ai+1;
(vi) If there is some i ∈ {2, 3, . . . , k} such that ρi

∼= 1F× , then ρ2 ∼= 1F× .

The ordered k-tuple Sk , attached to discrete series σ as in the previous
theorem, may not be unique. We denote by U (σ ) the set of all such ordered
k-tuples of discrete series representations. To obtain an ordered k-tuple which
is the most appropriate for determining the first occurrence indices of σ ,
to each Sk ∈ U (σ ) we attach a non-negative real number min(Sk) in the
following way:

Definition 4.3. For Sk ∈ U (σ ) we denote by min(Sk) the minimal x ∈ R

such that σ1 can be written as a unique irreducible subrepresentation of
the induced representation of the form δ([νxχV,ψ1F× , νbχV,ψ1F×]) � σsp,
b ≥ x, where σsp is a strongly positive discrete series. If there is no such x,
let min(Sk) = 0.

An ordered k-tuple Sk ∈ U (σ ) will be called minimal if min(Sk) ≤ min(S′
k)

for every S′
k ∈ U (σ ).

In what follows we fix one minimal ordered k-tuple Sk = (σ1, σ2, . . . , σk)

and write σi ↪→ δ([ν−aiχV,ψρi , ν
biχV,ψρi ])� σi−1 again.

By Theorem 3.3, there exists exactly one ε ∈ {+,−} such that
�ε(σ, n − tε) 
= 0, where t+ = 0 and t− = 1.

Proposition 6.2 of [14] shows �ε(σ1, n1 − tε) 
= 0 (note that σ1 is an

irreducible genuine representation of ˜Sp(n1)). Let us denote a half-integer
n1 − tε − rε(σ1) by m. The following proposition is the main result of the
paper [14]:

Proposition 4.4. Let us denote by r the largest integer l, 2 ≤ l ≤ k, such
that (ai , ρi ) = (

m + i − 3
2 , 1F×

)
and RP̃1

(σ )(νaiχV,ψ1F×) = 0 hold for
i = 2, 3, . . . , l. If there is no such l, set r = 1. Then rε(σ ) = n−tε−m−r +1
and rε

′
(σ ) = 2n−rε(σ ) for ε′ ∈ {+,−}, ε′ 
= ε. Furthermore, σεi (r

ε(σi )) is a
discrete series subrepresentation of δ([ν−ai +11F× , νbi 1F×])�σεi−1(r

ε(σi−1))

for i = 2, 3, . . . , r .

It has been proved in [4], and recalled in Theorem 3.3, that σε(n − tε)
is a discrete series representation. An analogous result for the lower lifts is
contained in the following proposition.
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Proposition 4.5. The representation σε(i) is in the discrete series for
rε(σ ) ≤ i ≤ n − tε .

Proof. We prove this proposition using induction over k. Let us first assume
k = 1. Consequently, σ ∼= σ1 is strongly positive discrete series and it has
been proved in [14], Section 4, that σε(i) is also strongly positive for rε(σ ) ≤
i ≤ n − tε . Furthermore, if there is some irreducible cuspidal representation
ρ of GL(l, F) such that RP̃l

(σ )(νxχV,ψρ) = 0 and RPl (σ
ε(i))(νxρ) 
= 0 for

some x ∈ R and rε(σ ) ≤ i ≤ n − tε , then ρ ∼= 1F× ; if also i 
= rε(σ ) holds,
then x = n − i + 1

2 − tε . Moreover, σε(n − tε) is a subrepresentation of the
induced representation of the form

ν
1
2 1F× × ν

3
2 1F× × · · · × νn−rε (σ )− 1

2 −tε1F× � σε(rε(σ )) (1)

and RP̃1
(σ )(νxχV,ψ1F×) = 0 if and only if RP1(σ

ε(rε(σ )))(νx1F×) = 0, for
x ∈ R.

To simplify notation, let us denote n − rε(σ )− 1
2 − tε by s.

Now we consider the case k > 1.
Since the representation σi is square-integrable and RP̃mi

(σi−1)

(νxχV,ψρi ) = 0 for ai ≤ x ≤ bi , using Lemma 2.1 and following the
same lines as in the proof of Theorem 2.3 of [22], we obtain that if μ∗(σi )

contains an irreducible representation δ([ν−aiχV,ψρi , ν
biχV,ψρi ]) ⊗ σ ′ then

σ ′ ∼= σi−1. Thus, Proposition 3.8 gives σεi (ni − tε) ↪→ δ([ν−aiρi , ν
biρi ]) �

σεi−1(ni−1 − tε).
Applying Proposition 3.8 k − 1 times we obtain

σε(n − tε) ↪→ δ([ν−akρk, ν
bkρk])× · · · × δ([ν−a2ρ2, ν

b2ρ2])� σε1 (n1 − tε).

If ρ2 ∼= 1F× , as a direct consequence of square-integrability of σε(n − tε),
Proposition 2.1 of [17] and the fact that σε1 (n1 − tε) can be embedded in the
induced representation of the form (1), we obtain a2 > s.

Let us comment the case k = 2.
If rε(σ ) = n − tε − m, Proposition 3.8 shows

σε(i) ↪→ δ([ν−a2ρ2, ν
b2ρ2])� σε1 (n1 − n + i),

for all i such that rε(σ ) ≤ i ≤ n − tε . Previous discussion shows
RPm2

(σ ε1 (n1 − n + i))(νxρ2) = 0 for a2 ≤ x ≤ b2. In the same way
as in Theorem 2.1 of [21] we obtain that the induced representation
δ([ν−a2ρ2, ν

b2ρ2])� σε1 (n1 − n + i) has exactly two irreducible subrepresen-
tations which are both in the discrete series. Consequently, σε(i) is a discrete
series representation.

If rε(σ ) = n − tε − m − 1, for rε(σ ) < i ≤ n − tε we again have

σε(i) ↪→ δ([ν−a21F×, νb21F×])� σε1 (n1 − n + i)
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and square-integrability of σε(i) follows in the same way as in previously
considered case, while the square-integrability of σε(rε(σ )) is noted in
Proposition 4.4. Note that we have also proved that if there is some x ∈ R

such that RPm2
(σ ε2 (i))(ν

xρ2) 
= 0 for rε(σ2) ≤ i ≤ n − tε , then either x ≤ a2

or x ≥ b2.
We suppose that the claim holds for all numbers less than k, k ≥ 3, and

prove it for k. Also, we inductively assume that if there is some x ∈ R such
that RPmk−1

(σ εk−1(i))(ν
xρk−1) 
= 0 for rε(σk−1) ≤ i ≤ n − tε , then either

x ≤ ak−1 or x ≥ bk−1.
Let i denote an element of the set {rε(σ ), rε(σ )+ 1, . . . , n − tε}.
For rε(σ ) = n − tε − m − k + 1 and i = r ε(σ ), σε(i) is in the discrete

series by Proposition 4.4, while otherwise using Proposition 3.8 we get

σε(i) ↪→ δ([ν−akρk, ν
bkρk])� σεk−1(nk−1 − n + i).

By the inductive assumption, σεk−1(nk−1 − n + i) is a discrete series
representation. If ρk is not isomorphic to ρk−1, then the fact that there is
no x ∈ R, ak ≤ x ≤ bk , such that RPmk

(σ εk−1(nk−1 − n + i))(νxρk) 
= 0
follows from Theorem 4.2 and the already observed case k = 1. On
the other hand, if ρk

∼= ρk−1 holds, non-existence of such x follows
directly from the inductive assumption. Repeating the arguments of The-
orem 2.1 of [21] we deduce that every irreducible subrepresentation of
δ([ν−akρk, ν

bkρk])� σεk−1(nk−1 − n + i) is in discrete series. Consequently,
σε(i) is a discrete series representation.

Also, using the classical group version of Lemma 2.1 and the inductive
assumption, we see at once that if there is some x such that RPmk

(σ εk (i))
(νxρk) 
= 0, for rε(σk) ≤ i ≤ n − tε , then either x ≤ ak or x ≥ bk . This
completes the proof. �

5. Generic theta lifts of discrete series

The first purpose of this section is to determine the first occurrence indices
of discrete series of metaplectic groups which have a generic theta lift on the
+-orthogonal tower. Further, we give a description of the first non-zero lifts
of such representations.

Let σ ∈ I rr(˜Sp(n)) denote a discrete series representation and let

σcusp ∈ I rr( ˜Sp(ncusp)) denote its partial cuspidal support. To the represen-
tation σ we attach an ordered k-tuple Sk = (σ1, σ2, . . . , σk) as in
Theorem 4.2, minimal in the sense of Definition 4.3. Again we write
σi ↪→ δ([ν−aiχV,ψρi , ν

biχV,ψρi ])� σi−1.
Suppose that there is some l such that σ+(l) is generic representation of

O(V +
l ).
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Corollary 3.4 implies l ≤ n, thus r+(σ ) ≤ n. Also, heredity of Whittaker
models and description of cuspidal supports of theta lifts imply that the
representation σ+

cusp(r
+(σcusp)) is generic. In the sequel we denote this

cuspidal representation by τ+
cusp. By the results of Shahidi, this implies that

for each cuspidal selfcontragredient representation ρ whose twist appears in
the cuspidal support of σ+(n), the induced representation νsρ� τ+

cusp reduces

for s ∈ {
0, 1

2 , 1
}
. Also, the induced representation νs1F× � τ+

cusp reduces for

s = 1
2 . By the rank-one reducibilities described in the Section 3, it follows

r+(σcusp) ∈ {n − 1, n}. This also shows r+(σcusp) ≤ r−(σcusp).
If r+(σcusp) = n − 1, then the induced representation νsχV,ψ1F× � σcusp

reduces for s = 3
2 . If r+(σcusp) = n, then this representation reduces for

s = 1
2 .

In the same way as in the proof of Proposition 4.5 we obtain

σ+(n) ↪→ δ([ν−akρk, ν
bkρk])× · · · × δ([ν−a2ρ2, ν

b2ρ2])� σ+
1 (n1).

This shows r+(σ1) ≤ n1 and the last case considered in Section 4 of [14]
yields that the representation ν

1
2χV,ψ1F× does not appear in the cuspidal

support of σ1. It is easily seen that the representation ν
1
2χV,ψ1F× either does

not appear in the cuspidal support of δ([ν−aiχV,ψρi , ν
biχV,ψρi ]) or appears

two times there, for i ∈ {2, 3, . . . , k}. Thus, we have proved the following:

Lemma 5.1. Suppose that genuine discrete series representation σ of
˜Sp(n) has generic lift on the +-orthogonal tower. Then the representation

ν
1
2χV,ψ1F× appears even number of times in the cuspidal support of σ .

Previous lemma, together with Proposition 4.1, shows that either there are
no twists of χV,ψ1F× appearing in the cuspidal support of σ1 or there is a
unique half integer b, b ≥ 3

2 , such that σ1 is a unique irreducible subrepresen-

tation of δ([ν
3
2χV,ψ1F×, νbχV,ψ1F×]) � σ ′

1, where σ ′
1 is a strongly positive

discrete series without any twists of χV,ψ1F× in the cuspidal support. Note
that the latter case can occur only if the induced representation νsχV,ψ1F× �

σcusp reduces for s = 3
2 .

In the following theorem we obtain important results regarding the first
occurrence in the case of generic reducibilities.

Theorem 5.2. Let σ ∈ I rr(˜Sp(n)) denote a discrete series representation
that has some generic lift in the +-orthogonal tower. Then r+(σ ) is an element
of the set {n − 1, n}.
Proof. We have already shown r+(σ ) ≤ n. If σ is a supercuspidal represen-
tation, theorem follows from the discussion made in the beginning of this
section.
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If σ is a non-supercuspidal strongly positive representation, then the

representation ν
1
2χV,ψ1F× does not appear in the cuspidal support of σ ,

since otherwise it would appear exactly once, by the classification of strongly
positive discrete series (this has also been discussed in the proof of Lemma 3.6
in [15]). Thus, if the induced representation νsχV,ψ1F× � σcusp reduces for
s = 1

2 , there are no twists of the representation χV,ψ1F× appearing in the
cuspidal support of σ . Further, if νsχV,ψ1F× � σcusp reduces for s = 3

2 and
there are some twists of χV,ψ1F× appearing in the cuspidal support of σ , it
follows from Proposition 4.1 that the minimal non-negative real number x
such that νxχV,ψ1F× appears in the cuspidal support of σ equals 3

2 .
Consequently, the first two cases considered in Section 4 of [14] yield

r+(σ ) ∈ {n, n−1}. Moreover, r+(σ ) = n−1 if and only if νsχV,ψ1F× �σcusp

reduces for s = 3
2 and there are no twists of the representation χV,ψ1F×

appearing in the cuspidal support of σ .
It remains to prove Theorem 5.2 for non-strongly positive discrete series σ ,

that is, for k ≥ 2.
Assumption of the theorem implies that there is some l ∈ {r+(σ ),

r+(σ ) + 1, . . . , n} such that σ+(l) is generic. Corollary 6.4 of [14] shows
that σ+(l) is a subrepresentation of

νn−l+ 1
2 1F× × νn−l+ 3

2 1F× × · · · × νn−r+(σ )− 1
2 1F× � σ+(r+(σ ))

and from Lemma 3.2 (ii) follows that σ+(r+(σ )) is generic.
We will prove that if r+(σ ) ≤ n − 2 then there is no generic lift of

the representation σ in the +-orthogonal tower. Two possibilities will be
considered separately.

• Suppose r+(σ ) < n − 2.

Since r+(σ ) ≤ n − 3 and n1 − 3 < r+(σ1), Proposition 4.4 shows that
there is an i ∈ {3, 4} such that (ai , ρi ) = ( 5

2 , 1F×
)
. Also, RP̃1

(σ )

(ν
5
2χV,ψ1F×) = RP̃1

(σi )(ν
5
2χV,ψ1F×) = 0 and RP̃1

(σ )(ν
3
2χV,ψ1F×) =

RP̃1
(σi−1)(ν

3
2χV,ψ1F×) = 0. For simplicity of notation, we denote the

representation σ+
i−1(r

+(σi−1)) briefly by τi−1.
Combining an inductive application of Proposition 3.8 with Propo-

sition 4.4, we deduce that σ+(r+(σ )) is a subrepresentation of

δ([νxkρk, ν
bkρk])× δ([νxk−1ρk−1, ν

bk−1ρk−1])× · · ·
× δ([ν− 3

2 1F×, νbi 1F× ])� τi−1

where x j equals either −a j or −a j + 1 for j = i + 1, i + 2, . . . , k.
Proposition 4.5 shows that both representations σ+(r+(σ )) and τi−1

are in the discrete series. Note that both these representations are generic.
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Combining [17], Proposition 2.1 and Lemma 5.1, with Proposition 3.1 of [5],

we obtain RP1(σ
+(r+(σ )))(ν 3

2 1F×) 
= 0. Therefore, there is some irreducible
representation τ of the appropriate odd orthogonal group such that σ+(r+(σ ))
is an irreducible subrepresentation of ν

3
2 1F× � τ . Since r+(σ ) ≤ n − 3,

Proposition 3.9 implies RP̃1
(σ )(ν

3
2χV,ψ1F×) 
= 0, a contradiction.

• Suppose r+(σ ) = n − 2.

In this case, Proposition 4.4 shows that there is an i ∈ {2, 3} such that (ai ,

ρi ) = (3
2 , 1F×

)
. Further, RP̃1

(σ )(ν
3
2χV,ψ1F×) = RP̃1

(σi )(ν
3
2χV,ψ1F×) = 0.

For abbreviation, we denote the representation σ+
i−1(ni−1 − 1) by τi−1.

Since σ+(n−2) is a generic discrete series, we may apply results of Hanzer
([5]) to obtain that every generic irreducible subquotient of the standard repre-

sentation ν
3
2 1F× �σ+(n−2) is a subrepresentation. By Lemma 3.7, σ+(n−1)

is a subrepresentation of ν
3
2 1F× � σ+(n − 2).

Combining Propositions 3.8 and 4.4, we deduce that σ+(n − 2) is a sub-
representation of

δ([ν−akρk, ν
bkρk])× · · · × δ([ν−ai+1ρi+1, ν

bi+1ρi+1])

× δ([ν− 1
2 1F× , νbi 1F× ])� τi−1.

If i = 2, τi−1 is a strongly positive representation containing no twists of 1F×
in its cuspidal support. On the other hand, if i = 3 then b2 ≥ b3 >

3
2 and τi−1

is a discrete series representation such that if RP1(τi−1)(ν
x1F×) 
= 0 then

x ≥ b2.
Since (a j , ρ j ) 
= (3

2 , 1F×
)

for j ∈ {2, 3, . . . , k}, j 
= i , and
(b j , ρ j ) 
= ( 3

2 , 1F×
)

for j ∈ {2, 3, . . . , k}, it follows immediately that

RP1(σ
+(n − 2))(ν

3
2 1F×) = 0.

We directly obtain that irreducible representation ν
3
2 1F× ⊗ σ+(n − 2)

appears exactly once in μ∗(ν 3
2 1F× � σ+(n − 2)). Hence σ+(n − 1) is the

unique irreducible subrepresentation of ν
3
2 1F× � σ+(n − 2), and it follows

that σ+(n − 1) is generic.

Further, Lemma 3.7 provides an embedding σ+(n) ↪→ ν
1
2 1F× �σ+(n −1)

and in the same way as in the previously considered case it can be seen that
σ+(n − 1) is a subrepresentation of

δ([ν−akρk, ν
bkρk])× · · · × δ([ν−ai 1F× , νbi 1F× ])� τi−1.

Repeating the same arguments as before, we conclude that σ+(n) is also
a generic discrete series, given as the unique irreducible subrepresentation of

the standard representation ν
1
2 1F× � σ+(n − 1).
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We have the following embeddings and intertwining operators:

σ+(n) ↪→ ν
1
2 1F× � σ+(n − 1)

↪→ ν
1
2 1F× × ν

3
2 1F× � σ+(n − 2)

→ ν
3
2 1F× × ν

1
2 1F× � σ+(n − 2).

Note that the kernel of the last intertwining operator equals

L(ν
1
2 1F×, ν

3
2 1F×)� σ+(n − 2), (2)

where L(ν
1
2 1F×, ν

3
2 1F×) stands for the unique irreducible subrepresentation

of the induced representation ν
1
2 1F× × ν

3
2 1F× . Since the representation (2) is

degenerate, it follows that σ+(n) is a subrepresentation of ν
3
2 1F× × ν 1

2 1F× �

σ+(n − 2).
Consequently, there is some irreducible representation τ ∈ I rr(O(V +

n−1))

such that σ+(n) ↪→ ν
3
2 1F× � τ . Proposition 3.9 shows RP̃1

(σ )

(ν
3
2χV,ψ1F×) 
= 0, which is impossible.
Therefore r+(σ ) equals either n − 1 or n and the proof is complete. �

As a consequence of the previous theorem, we obtain the main result of this
paper:

Corollary 5.3. Suppose that discrete series representation σ of ˜Sp(n) has
some generic lift in the +-orthogonal tower. The σ is ψ-generic.

Proof. By the results of Gan and Savin, summarized in Theorem 3.3, it is
enough to prove that σ+(n) is generic.

By Theorem 5.2 and consequence of Corollary 3.4, either σ+(n) or
σ+(n − 1) is generic. If σ+(n) is generic, there is nothing to prove. Suppose
that σ+(n − 1) is generic. By Lemma 3.7, σ+(n) is subrepresentation of

ν
1
2 1F× �σ+(n −1). Further, by the first part of Lemma 3.2, every irreducible

generic subquotient of ν
1
2 1F× � σ+(n − 1) is square-integrable and by the

results of Hanzer ([5]) it is a subrepresentation.
By Theorem 4.5, both representations σ+(n) and σ+(n − 1) are in the

discrete series. It follows directly from Proposition 2.1 and Lemma 3.6 of [17]

that RP1(σ
+(n−1))(ν

1
2 1F×) = 0. Consequently, ν

1
2 1F× ⊗σ+(n−1) appears

exactly once in RP1(ν
1
2 1F× � σ+(n − 1)).

Thus, the representation σ+(n) is the unique irreducible subrepresentation

of ν
1
2 1F× � σ+(n − 1) and, in consequence, it is generic. �

We also note the following corollary.
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Corollary 5.4. Let σ ∈ I rr(˜Sp(n)) denote a ψ-generic discrete series
representation. Then σ+(r+(σ )) is generic.

Proof. Theorem 5.2 shows r+(σ ) ∈ {n − 1, n}. If r+(σ ) = n, the corollary
follows from Theorem 3.3. On the other hand, if r+(σ ) = n − 1, we deduce
that the generic discrete series σ+(n) is a subrepresentation of ν

1
2 1F× �

σ+(n −1). Thus, genericity of σ+(n −1) is a consequence of Lemma 3.2 (ii).
This proves the corollary. �
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